Simultaneous Maximum-Likelihood Reconstruction of Absorption Coefficient, Refractive Index and Dark-Field Scattering Coefficient in X-Ray Talbot-Lau Tomography
نویسندگان
چکیده
A maximum-likelihood reconstruction technique for X-ray Talbot-Lau tomography is presented. This technique allows the iterative simultaneous reconstruction of discrete distributions of absorption coefficient, refractive index and a dark-field scattering coefficient. This technique avoids prior phase retrieval in the tomographic projection images and thus in principle allows reconstruction from tomographic data with less than three phase steps per projection. A numerical phantom is defined which is used to evaluate convergence of the technique with regard to photon statistics and with regard to the number of projection angles and phase steps used. It is shown that the use of a random phase sampling pattern allows the reconstruction even for the extreme case of only one single phase step per projection. The technique is successfully applied to measured tomographic data of a mouse. In future, this reconstruction technique might also be used to implement enhanced imaging models for X-ray Talbot-Lau tomography. These enhancements might be suited to correct for example beam hardening and dispersion artifacts and improve overall image quality of X-ray Talbot-Lau tomography.
منابع مشابه
Polychromatic Maximum Likelihood Reconstruction for Talbot-Lau X-ray Tomography
Compared to conventional attenuation imaging, Talbot-Lau X-ray grating interferometry applied within a polychromatic setup suffers from additional artifacts. Among those are beam hardening and dispersion effects due to the complex coupling of different physical effects involved in the image formation process. In computed tomography these effects lead to image degradation, such as cupping and st...
متن کاملComparison of phase contrast X-ray computed tomography methods for non-destructive testing of materials
Currently the basis for standard X-ray computed tomography (CT) is absorption. A volumetric map of a specimen in three dimensions is generated from a set of absorption radiographs. The contrast of details strongly depends on a difference in absorption coefficient between the detail and the environment. However, when the absorption difference is low, sufficient contrast for a good quality X-ray ...
متن کاملSimulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging.
A simulation framework for coherent X-ray imaging, based on scalar diffraction theory, is presented. It contains a core C++ library and an additional Python interface. A workflow is presented to include contributions of inelastic scattering obtained with Monte-Carlo methods. X-ray Talbot-Lau interferometry is the primary focus of the framework. Simulations are in agreement with measurements obt...
متن کاملQuantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source.
Over the last few years, differential phase-contrast x-ray computed tomography (PC-CT) using a hard x-ray grating interferometer and polychromatic x-ray tube sources has been developed. The method allows for simultaneous determination of the attenuation coefficient and the refractive index decrement distribution inside an object in three dimensions. Here we report experimental results of our in...
متن کاملNon-invasive Differentiation of Kidney Stone Types using X-ray Dark-Field Radiography
Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016